美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代寫COMP34212、代做Python/c++程序設(shè)計(jì)

時(shí)間:2024-04-29  來源:  作者: 我要糾錯(cuò)



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    91高清免费看| 中文字幕免费高清视频| 91av在线免费| 97精品人妻一区二区三区蜜桃| 中文字幕五月天| 少妇高潮惨叫久久久久| 奇米网一区二区| 被黑人猛躁10次高潮视频| 丰满饥渴老女人hd| 国产又粗又长又爽| 亚洲专区区免费| 免费一级做a爰片久久毛片潮| 天天躁日日躁aaaa视频| 卡一卡二卡三在线观看| 99re6热在线精品视频| 韩国一区二区三区四区| 自拍视频一区二区| 秋霞欧美一区二区三区视频免费 | 日韩一区二区三区四区在线| 亚洲 自拍 另类 欧美 丝袜| 亚洲国产无码精品| 黄色片子在线观看| 久久99久久99精品免费看小说| 无码人妻丰满熟妇啪啪网站| 亚洲综合网在线观看| 日本一级二级视频| 欧美激情aaa| 久久人妻少妇嫩草av蜜桃| 久久精品视频18| 欧美日韩一区二区区| www在线观看免费视频| 一区二区三区四区五区| 一区二区黄色片| 日本精品一二三| 极品尤物一区二区| 亚洲av午夜精品一区二区三区| 亚洲欧美va天堂人熟伦| 国产婷婷在线观看| 国产真实乱在线更新| 久久丫精品国产亚洲av不卡| 在线观看网站黄| 久久视频精品在线观看| 中文字幕在线播放视频| 性久久久久久久久久| 特种兵之深入敌后| 男女羞羞免费视频| 中文字幕一区二区人妻在线不卡| 欧美一区二区三区观看| 欧美老熟妇乱大交xxxxx| 国产在线不卡av| 国产女主播在线播放| av女名字大全列表| 91av免费观看| 亚洲v在线观看| 日本三级日本三级日本三级极| 永久看片925tv| xxxx日本少妇| 深夜视频在线观看| 亚洲av成人精品一区二区三区 | 九九九视频在线观看| 国产精品成人一区二区三区电影毛片| 无码成人精品区在线观看| 又黄又色的网站| 老司机免费视频| 少妇久久久久久久久久| 精品人妻一区二区三区四区| 亚洲a v网站| 国产农村妇女精品一区| 午夜三级在线观看| 国产成人精品一区二区在线小狼| 亚洲熟妇一区二区| 亚洲第一香蕉网| 视频国产一区二区| 91精品啪在线观看国产| 精品无码人妻一区| 91高清免费观看| 亚洲v在线观看| 深田咏美中文字幕| 中文字幕狠狠干| 波多野结衣不卡视频| 影音先锋人妻啪啪av资源网站| 黄色正能量网站| 麻豆精品国产免费| 中文字幕天堂网| 免费成人深夜蜜桃视频| 97人妻精品一区二区三区免费| 全黄一级裸体片| 免费看91视频| 亚洲国产欧美视频| 四虎国产精品免费| 你懂得视频在线观看| 在线精品视频播放| 三级黄色录像视频| 天天躁日日躁aaaa视频| 无码人妻丰满熟妇区毛片蜜桃精品 | av在线免费观看不卡| 特黄特色免费视频| 999久久久国产| 国产精品毛片一区二区| 欧美一级片黄色| 中文字幕av免费在线观看| 亚洲啪av永久无码精品放毛片| 中文字幕 亚洲一区| 丰满少妇一区二区三区专区| 巨胸大乳www视频免费观看| 少妇影院在线观看| 免费在线观看黄色小视频| 亚洲天堂网一区二区| 亚洲啪av永久无码精品放毛片 | 五月婷婷婷婷婷| 西西大胆午夜视频| 免费精品在线视频| 亚洲成人黄色av| 国产又粗又猛又色| av天堂一区二区| 国产真人真事毛片视频| 四虎永久免费影院| 播金莲一级淫片aaaaaaa| 亚洲中文字幕一区| 中国黄色片视频| 91丝袜在线观看| 中文字幕在线看高清电影| www.超碰97| 亚洲激情视频小说| 亚洲精品电影院| 国产精品久久久精品四季影院| 国产67194| 在线播放av网址| 蜜桃精品成人影片| 少妇太紧太爽又黄又硬又爽小说 | 日韩综合第一页| 婷婷色一区二区三区 | 91丝袜在线观看| 无码国产69精品久久久久同性| 一区二区三区伦理片| 国产又粗又猛又爽又黄的视频四季 | 一本色道久久综合亚洲精品图片| 午夜精品福利在线视频| 亚洲成人福利视频| 中文字幕国产专区| 亚洲一二三在线观看| 最新日本中文字幕| 黄色正能量网站| 成人免费毛片xxx| 蜜桃视频最新网址| 国产乱国产乱老熟300部视频| 亚洲av无码国产精品久久| 亚洲av熟女国产一区二区性色| 青青草华人在线视频| gogo亚洲国模私拍人体| 日韩精品视频一区二区| 四季av中文字幕| 永久免费看mv网站入口78| 日韩成人短视频| 久久只有这里有精品| 在线播放第一页| 91 在线视频| 欧美三级视频网站| 性猛交╳xxx乱大交| 亚洲一级理论片| 亚洲人成人无码网www国产 | 国产调教打屁股xxxx网站| 69xxx免费| 91视频在线网站| 欧美深性狂猛ⅹxxx深喉| 日韩久久久久久久久久久| 色偷偷男人天堂| 国产成人免费观看网站| 艳妇乳肉亭妇荡乳av| 国产又粗又猛又爽又黄| 紧身裙女教师波多野结衣| 91无套直看片红桃在线观看| 日韩av在线看免费观看| japanese在线观看| 欧美一级片黄色| 国产+高潮+白浆+无码| 国产免费无码一区二区| av地址在线观看| 亚洲女则毛耸耸bbw| 免费中文字幕在线| 日韩一区二区不卡视频| www.99re7| 国产高潮失禁喷水爽到抽搐| 欧美高清精品一区二区| 中文字幕1区2区| 亚洲视频 中文字幕| 中文字幕一区二区久久人妻网站| 亚州av综合色区无码一区| 日本一卡二卡在线| 成人精品在线观看视频| 一区二区三区四区免费| 国产在线免费av| 国产大片免费看| 91视频在线免费| 久久国产精品影院| 亚洲人与黑人屁股眼交| 超级砰砰砰97免费观看最新一期 | 制服丝袜第一页在线观看| 亚洲成人生活片| www.88av|