美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代做Lab 2: Time Series Prediction with GP

時間:2024-03-21  來源:  作者: 我要糾錯



Evolutionary Computation 2023/2024
Lab 2: Time Series Prediction with GP
Released: February 26, 2024
Deadline: March 18, 2024
Weight: 25 %
You need to implement one program that solves Exercises 1-3 using any programming language.
In Exercise 5, you will run a set of experiments and describe the result using plots and a short
discussion.
(In the following, replace abc123 with your username.) You need to submit one zip file
with the name ec2024-lab2-abc123.zip. The zip file should contain one directory named
ec2024-lab2-abc123 containing the following files:
• the source code for your program
• a Dockerfile (see the appendix for instructions)
• a PDF file for Exercises 4 and 5
In this lab, we will do a simple form of time series prediction. We assume that we are given some
historical data, (e.g. bitcoin prices for each day over a year), and need to predict the next value in
the time series (e.g., tomorrow’s bitcoin value).
1
We formulate the problem as a regression problem. The training data consists of a set of m
input vectors X = (x
(0), . . . , x(m−1)) representing historical data, and a set of m output values
Y = (x
(0), . . . , x(m−1)), where for each 0 ≤ j ≤ m − 1, x
(j) ∈ R
n and y
(j) ∈ R. We will use genetic
programming to evolve a prediction model f : R
n → R, such that f(x
(j)
) ≈ y
(j)
.
Candidate solutions, i.e. programs, will be represented as expressions, where each expression evaluates to a value, which is considered the output of the program. When evaluating an expression,
we assume that we are given a current input vector x = (x0, . . . , xn−1) ∈ R
n. Expressions and evaluations are defined recursively. Any floating number is an expression which evaluates to the value
of the number. If e1, e2, e3, and e4 are expressions which evaluate to v1, v2, v3 and v4 respectively,
then the following are also expressions
• (add e1 e2) is addition which evaluates to v1 + v2, e.g. (add 1 2)≡ 3
• (sub e1 e2) is subtraction which evaluates to v1 − v2, e.g. (sub 2 1)≡ 1
• (mul e1 e2) is multiplication which evaluates to v1v2, e.g. (mul 2 1)≡ 2
• (div e1 e2) is division which evaluates to v1/v2 if v2 ̸= 0 and 0 otherwise, e.g., (div 4 2)≡ 2,
and (div 4 0)≡ 0,
• (pow e1 e2) is power which evaluates to v
v2
1
, e.g., (pow 2 3)≡ 8
• (sqrt e1) is the square root which evaluates to √
v1, e.g.(sqrt 4)≡ 2
• (log e1) is the logarithm base 2 which evaluates to log(v1), e.g. (log 8)≡ 3
• (exp e1) is the exponential function which evaluates to e
v1
, e.g. (exp 2)≡ e
2 ≈ 7.39
• (max e1 e2) is the maximum which evaluates to max(v1, v2), e.g., (max 1 2)≡ 2
• (ifleq e1 e2 e3 e4) is a branching statement which evaluates to v3 if v1 ≤ v2, otherwise the
expression evaluates to v4 e.g. (ifleq 1 2 3 4)≡ 3 and (ifleq 2 1 3 4)≡ 4
• (data e1) is the j-th element xj of the input, where j ≡ |⌊v1⌋| mod n.
• (diff e1 e2) is the difference xk − xℓ where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋| mod n
• (avg e1 e2) is the average 1
|k−ℓ|
Pmax(k,ℓ)−1
t=min(k,ℓ)
xt where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋|
mod n
In all cases where the mathematical value of an expression is undefined or not a real number (e.g.,

−1, 1/0 or (avg 1 1)), the expression should evaluate to 0.
We can build large expressions from the recursive definitions. For example, the expression
(add (mul 2 3) (log 4))
evaluates to
2 · 3 + log(4) = 6 + 2 = 8.
2
To evaluate the fitness of an expression e on a training data (X , Y) of size m, we use the mean
square error
f(e) = 1
m
mX−1
j=0

y
(j) − e(x
(j)
)
2
,
where e(x
(j)
) is the value of the expression e when evaluated on the input vector x
(j)
.
3
Exercise 1. (30 % of the marks)
Implement a routine to parse and evaluate expressions. You can assume that the input describes a
syntactically correct expression. Hint: Make use of a library for parsing s-expressions1
, and ensure
that you evaluate expressions exactly as specified on page 2.
Input arguments:
• -expr an expression
• -n the dimension of the input vector n
• -x the input vector
• -question the question number (always 1 in this case)
Output:
• the value of the expression
Example: In this example, we assume that your program has been compiled to an executable with
the name my lab solution.
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 1 -x "1.0"
-expr "(mul (add 1 2) (log 8))"
9.0
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 2 -x "1.0 2.0"
-expr "(max (data 0) (data 1))"
2.0
Exercise 2. (10 % of the marks) Implement a routine which computes the fitness of an expression
given a training data set.
Input arguments:
• -expr an expression
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing the training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -question the question number (always 2 in this case)
1See e.g. implementations here http://rosettacode.org/wiki/S-Expressions
4
Output:
• The fitness of the expression, given the data.
Exercise 3. (30 % of the marks)
Design a genetic programming algorithm to do time series forecasting. You can use any genetic
operators and selection mechanism you find suitable.
Input arguments:
• -lambda population size
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -time budget the number of seconds to run the algorithm
• -question the question number (always 3 in this case)
Output:
• The fittest expression found within the time budget.
Exercise 4. (10 % of the marks) Here, you should do one of the following exercises.
If you follow LH Evolutionary Computation, do the following exercise: Describe your
algorithm from Exercise 3 in the form of pseudo-code. The pseudo-code should be sufficiently detailed
to allow an exact re-implementation.
If you follow LM Evolutionary Computation (extended), do the following exercise:
Describe in 150 words or less the result in one recent research paper on the topic “symbolic regression
using genetic programming”. The paper needs to be published in 2020 or later in the proceedings of
one of the following conferences: GECCO, PPSN, CEC, or FOGA.
5
Exercise 5. (20 % of the marks)
In this final task, you should try to determine parameter settings for your algorithm which lead to
as fit expressions as possible.
Your algorithm is likely to have several parameters, such as the population size, mutation rates,
selection mechanism, and other mechanisms components, such as diversity mechanisms.
Choose parameters which you think are essential for the behaviour of your algorithm. Run a set of
experiments to determine the impact of these parameters on the solution quality. For each parameter
setting, run 100 repetitions, and plot box plots of the fittest solution found within the time budget.
6
A. Docker Howto
Follow these steps exactly to build, test, save, and submit your Docker image. Please replace abc123
in the text below with your username.
1. Install Docker CE on your machine from the following website:
https://www.docker.com/community-edition
2. Copy the PDF file from Exercises 4 and 5 all required source files, and/or bytecode to an
empty directory named ec2024-lab2-abc123 (where you replace abc123 with your username).
mkdir ec2024 - lab2 - abc123
cd ec2024 - lab2 - abc123 /
cp ../ exercise . pdf .
cp ../ abc123 . py .
3. Create a text file Dockerfile file in the same directory, following the instructions below.
# Do not change the following line . It specifies the base image which
# will be downloaded when you build your image .
FROM pklehre / ec2024 - lab2
# Add all the files you need for your submission into the Docker image ,
# e . g . source code , Java bytecode , etc . In this example , we assume your
# program is the Python code in the file abc123 . py . For simplicity , we
# copy the file to the / bin directory in the Docker image . You can add
# multiple files if needed .
ADD abc123 . py / bin
# Install all the software required to run your code . The Docker image
# is derived from the Debian Linux distribution . You therefore need to
# use the apt - get package manager to install software . You can install
# e . g . java , python , ghc or whatever you need . You can also
# compile your code if needed .
# Note that Java and Python are already installed in the base image .
# RUN apt - get update
# RUN apt - get -y install python - numpy
# The final line specifies your username and how to start your program .
# Replace abc123 with your real username and python / bin / abc123 . py
# with what is required to start your program .
CMD [" - username " , " abc123 " , " - submission " , " python / bin / abc123 . py "]
7
4. Build the Docker image as shown below. The base image pklehre/ec2024-lab2 will be
downloaded from Docker Hub
docker build . -t ec2024 - lab2 - abc123
5. Run the docker image to test that your program starts. A battery of test cases will be executed
to check your solution.
docker run ec2024 - lab2 - abc123
6. Once you are happy with your solution, compress the directory containing the Dockerfile as
a zip-file. The directory should contain the source code, the Dockerfile, and the PDF file
for Exercise 4 and 5. The name of the zip-file should be ec2024-lab2-abc123.zip (again,
replace the abc123 with your username).
Following the example above, the directory structure contained in the zip file should be as
follows:
ec2024-lab2-abc123/exercise.pdf
ec2024-lab2-abc123/abc123.py
ec2024-lab2-abc123/Dockerfile
Submissions which do not adhere to this directory structure will be rejected!
7. Submit the zip file ec2024-lab2-abc123.zip on Canvas.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代寫CSIE3310、代做c++/Python編程
  • 下一篇:AIST1110代做、Python編程設(shè)計代寫
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    亚洲欧美高清在线| 丰满大乳奶做爰ⅹxx视频| 99精品久久久久| 国产 欧美 在线| 欧美性猛交乱大交| 性色国产成人久久久精品| 久久人妻一区二区| 艳妇乳肉豪妇荡乳xxx| 国产黄色小视频网站| 三区四区在线观看| 性猛交ⅹxxx富婆video| 黄色性生活一级片| 97超碰在线资源| 黄色在线观看av| 国产精品九九九九九| 亚洲少妇18p| v天堂中文在线| 国产特级黄色录像| 日本一二三不卡视频| 69精品无码成人久久久久久| 谁有免费的黄色网址| 娇妻被老王脔到高潮失禁视频| 亚洲一级中文字幕| av资源在线免费观看| 日韩一卡二卡在线观看| 天天舔天天操天天干| 国产精品国产三级国产传播| 欧美激情图片小说| 麻豆视频免费在线播放| 日韩人妻无码精品综合区| 无码一区二区三区在线| 亚洲av毛片基地| 国产三级国产精品国产国在线观看| 中文字幕在线有码| 中文字幕精品久久久| 无码人妻aⅴ一区二区三区 | 国产黄a三级三级| 精品伦精品一区二区三区视频密桃| 来吧亚洲综合网| 99久久免费看精品国产一区| 3d动漫精品啪啪一区二区下载 | 精品国产欧美日韩不卡在线观看| 一起操在线播放| 黄色性生活一级片| 国产suv精品一区二区68| 国产福利在线观看视频| 顶级黑人搡bbw搡bbbb搡| 亚洲av人人澡人人爽人人夜夜| 爱爱的免费视频| 免费黄色av网址| 丁香六月激情综合| 在线观看国产网站| 老妇女50岁三级| 少妇愉情理伦三级| 影音先锋人妻啪啪av资源网站| 国精产品视频一二二区| 少妇毛片一区二区三区| 国产精品白嫩白嫩大学美女| www.av天天| 中文字幕一区二区久久人妻网站 | 成人做爰www看视频软件 | 色哟哟在线观看视频| 性欧美一区二区| 久久一区二区电影| 国产精品日日摸夜夜爽| 91插插插插插插| 中文字幕人妻一区二区| 私密视频在线观看| 深田咏美中文字幕| 在线观看成人毛片| 少妇高潮一区二区三区喷水| 日本美女bbw| 国内精品卡一卡二卡三| 色欲AV无码精品一区二区久久| 亚洲第一黄色网址| 成人无码www在线看免费| 日本不卡视频一区| 少妇被狂c下部羞羞漫画| 国产精品无码自拍| 91视频免费在线看| 91精品又粗又猛又爽| 欧美日韩一区二区三区四区五区六区| wwwav国产| av在线免费观看不卡| 日本成人在线免费| 日本一卡二卡在线| 无码人妻精品一区二区三区温州| 精品人妻一区二区免费视频| 精品国产av色一区二区深夜久久 | 特级西西人体wwwww| 国产亚洲无码精品| 男人天堂资源网| 久久高清内射无套| 性活交片大全免费看| 国产精品成人99一区无码 | 中文字幕人妻一区二区| 天堂av网手机版| 日本成人免费在线观看 | 深爱五月激情网| 日本精品在线观看视频| 国产第一页浮力| 极品白嫩的小少妇| 亚洲理论片在线观看| 色在线观看视频| 妖精视频一区二区| 人妻互换一区二区激情偷拍| 三级av在线免费观看| 国产一线在线观看| 国产馆在线观看| 中文字幕无人区二| 女同久久另类69精品国产| 性一交一黄一片| 日本污视频网站| 国产a级片视频| 日韩av片在线| 亚洲一区二区在线免费| 国产白袜脚足j棉袜在线观看| 精品久久久久一区二区| 国产精品99久久久久久成人| 国内精品免费视频| 99自拍视频在线| 亚洲AV无码国产成人久久| 午夜av入18在线| 丁香六月激情综合| 法国伦理少妇愉情| 人妻精油按摩bd高清中文字幕| 性猛交娇小69hd| 538国产视频| 丰满熟女人妻一区二区三区| 91免费公开视频| 女女互磨互喷水高潮les呻吟| 不许穿内裤随时挨c调教h苏绵| 玖玖爱在线观看| 国产一区二区三区四区五区六区| 日本女人性视频| 日韩欧美国产成人精品免费| www久久久久久久| 久久精品老司机| 欧美成人三级伦在线观看| 黑人巨大猛交丰满少妇| 人妻激情偷乱视频一区二区三区| 少妇高潮在线观看| 疯狂撞击丝袜人妻| 少妇一级黄色片| fc2ppv在线播放| 日韩在线视频网址| 破处女黄色一级片| 黑人巨大精品一区二区在线| www深夜成人a√在线| 2025国产精品自拍| 青青草精品在线| 国产chinese中国hdxxxx| 在线观看成人动漫| free性中国hd国语露脸| 久久久久久久久久久久久久久| 国产精品成人一区二区三区电影毛片| 亚洲国产精品无码久久久久高潮| 小毛片在线观看| 精品国产成人亚洲午夜福利| 国产人妻大战黑人20p| 美国精品一区二区| 国产97免费视频| 欧类av怡春院| 精品熟妇无码av免费久久| 在线免费看av网站| 国产在线不卡av| 岛国片在线免费观看| 青青草原在线免费观看| 97香蕉碰碰人妻国产欧美| 在线不卡av电影| 成人在线观看小视频| 在线黄色免费网站| 公肉吊粗大爽色翁浪妇视频| 乱h高h女3p含苞待放| 成人免费毛片日本片视频| 五月激情四射婷婷| 永久免费看片在线观看| 在哪里可以看毛片| 日本人dh亚洲人ⅹxx| 一级片手机在线观看| 欧美性猛交xxxxx少妇| 国精品无码人妻一区二区三区| 色欲狠狠躁天天躁无码中文字幕| 性欧美videos| 级毛片内射视频| 亚洲少妇一区二区三区| 欧美色图17p| 特级西西人体4444xxxx| 女王人厕视频2ⅴk| 中文字幕免费高清| 99re久久精品国产| 欧美性猛交乱大交| 亚洲一级二级片| xxxxx在线观看| 漂亮人妻被黑人久久精品| 四虎免费在线视频| 小早川怜子一区二区的演员表| 成人性生交大免费看| 性猛交╳xxx乱大交| 被黑人猛躁10次高潮视频|