美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    多男操一女视频| 中文天堂资源在线| 女教师淫辱の教室蜜臀av软件| 国产一级二级av| 三级全黄做爰视频| jizz日本在线播放| 性猛交ⅹxxx富婆video| 中文字幕一区二区人妻在线不卡 | 中文字幕资源站| 99久久久无码国产精品衣服| 国内精品久久99人妻无码| 波多野结衣av在线免费观看| 少妇一级淫免费观看| 菠萝菠萝蜜网站| 在线观看免费小视频| www.涩涩爱| av女名字大全列表| 国模无码视频一区| 欧美双性人妖o0| 国产黄色大片免费看| 蜜桃视频最新网址| 亚洲欧美激情一区二区三区| 国产艳妇疯狂做爰视频| 在线观看国产网站| 国产人妻大战黑人20p| 午夜精品一区二区三级视频| 少妇丰满尤物大尺度写真| 国产美女视频免费观看下载软件| 欧美一区二区三区成人精品| 国产性猛交96| 免费在线观看污| 中国一级片在线观看| 久久久高清视频| 亚洲第一综合网| 女人扒开腿免费视频app| 天天插天天射天天干| 成人欧美一区二区三区黑人一| 在线观看你懂的视频| 久久久久久国产精品无码| 免费国产羞羞网站美图| 91玉足脚交白嫩脚丫| 国产色无码精品视频国产| 日韩无码精品一区二区| 国精产品一区一区| 51调教丨国产调教视频| 成年人一级黄色片| www亚洲色图| 亚洲一区二区三区四区五区六区| 亚洲熟女少妇一区二区| 插我舔内射18免费视频| 国产少妇在线观看| 国产一区二区三区精品在线| 亚洲av无码专区在线播放中文| 中文字幕第二区| 国产国语性生话播放| 人妻体体内射精一区二区| 国产福利在线导航| 亚洲人成人无码网www国产 | 免费黄色av网址| 五月天免费网站| 无码h肉动漫在线观看| 老司机免费视频| 人妻互换一二三区激情视频| 天天色天天综合| 少妇高潮在线观看| www日韩在线| 亚洲综合视频网站| a在线视频播放观看免费观看| 人妻少妇无码精品视频区| 免费无码一区二区三区| 人妻体内射精一区二区三区| 伊人久久久久久久久| 国产吃瓜黑料一区二区| 性一交一黄一片| 久草福利在线观看| 久久久久亚洲AV成人网人人小说| 男人操女人的视频网站| 日本亚洲一区二区三区| 日本黄色片免费观看| 粉嫩av性色av蜜臀av网站| 好吊视频在线观看| 色婷婷国产精品免| 午夜精品一区二区三级视频| 国产suv精品一区二区68| 国产美女久久久久久| 永久免费看片在线观看| 国产精品成人无码专区| 欧美一区二区三区成人精品| 午夜精产品一区二区在线观看的| 国产av自拍一区| 亚洲AV成人无码网站天堂久久| 三级全黄做爰视频| 麻豆精品国产传媒av| 中文字幕一区二区三区人妻电影| 少妇愉情理伦三级| 亚洲av无码一区二区三区在线| 第一页在线视频| 国产精品20p| av地址在线观看| 免费在线观看成年人视频| 神马久久久久久久久久久| a级片在线观看免费| 人妻无码一区二区三区| 毛片aaaaaa| 日韩精品国产一区| 极品蜜桃臀肥臀-x88av| 成人三级做爰av| 男人的天堂官网| 日本泡妞xxxx免费视频软件| 国产色视频一区二区三区qq号| 小早川怜子一区二区的演员表| 黄色免费视频网站| 欧美性x x x| 永久免费成人代码| av电影在线播放| 黑人狂躁日本娇小| 在哪里可以看毛片| 免费黄色三级网站| 四虎永久免费在线| 国产真人做爰视频免费| 日本wwwwwww| 日本妇女毛茸茸| 男女男精品视频网站| 久久久无码人妻精品一区| 下面一进一出好爽视频| 影音先锋男人资源在线观看| 精品国产一区在线| 国产精品嫩草69影院| 成年人av电影| 男人操女人的视频网站| 免费一级suv好看的国产网站| 爱爱的免费视频| 亚洲专区区免费| 久久久久亚洲av无码专区桃色| 老熟妇精品一区二区三区| 久久久久亚洲av无码网站| 农村妇女精品一区二区| 国产精品免费人成网站酒店| 日本 欧美 国产| 18岁成人毛片| 日韩大尺度视频| 欧美做受高潮中文字幕| 国产精品一区二区在线免费观看| 男插女视频网站| 日本性生活一级片| 欧美黄色aaa| 女人扒开腿免费视频app| 538精品在线观看| 在线播放国产视频| 国产一级免费片| 中文字幕丰满孑伦无码专区| 少妇特黄一区二区三区| 精品人妻中文无码av在线| 成人无码精品1区2区3区免费看| 国产精品www爽爽爽| www青青草原| 欧美丰满少妇人妻精品| 国产午夜福利一区| www.xxxx日本| 一级欧美一级日韩片| 91l九色lporny| 男人的天堂久久久| 中文在线永久免费观看| 国产一二三四区在线| 手机看片国产精品| 精品黑人一区二区三区观看时间| 亚洲色成人网站www永久四虎| 日韩亚洲欧美中文字幕| 亚洲av综合色区无码另类小说| 日本五十肥熟交尾| 女同久久另类69精品国产| 国产一级二级av| 免费福利视频网站| 国产乱淫av麻豆国产免费| 波多野结衣a v在线| 日韩久久久久久久久久久| 日本黄色录像片| 亚洲精品卡一卡二| www在线观看免费视频| 欧产日产国产v| 伊人影院综合网| 国产精品久久无码| 亚洲av无码久久精品色欲| 日韩av在线看免费观看| 不许穿内裤随时挨c调教h苏绵| 少妇一级黄色片| 喷水视频在线观看| 麻豆精品国产传媒| 男人晚上看的视频| 69精品无码成人久久久久久| 国产亚洲精品成人a| 国产麻豆a毛片| 少妇人妻好深好紧精品无码| 精品人妻一区二区三区日产| 久久无码人妻一区二区三区| 日本成人精品视频| 中国1级黄色片| 中国特黄一级片| 九九热免费在线| 人妻互换一区二区激情偷拍|