美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    a级大片免费看| 天天操夜夜操av| 国产传媒视频在线 | 免费看三级黄色片| www.日本高清视频| av在线网站观看| 国产破处视频在线观看| 黄色工厂在线观看| 99久久人妻精品免费二区| 国产成人一区二区在线观看| 欧美一级大片免费看| 毛茸茸多毛bbb毛多视频| 老熟妻内射精品一区| 日韩少妇一区二区| 日本少妇xxxx| 一级黄色片毛片| 日本69式三人交| 野外性满足hd| 欧美 日韩 国产 成人 在线观看| 不许穿内裤随时挨c调教h苏绵| 久久国产波多野结衣| 天天操夜夜操av| 91麻豆免费视频网站| 四虎免费在线视频| 国产女主播在线播放| 麻豆国产精品一区| 成熟人妻av无码专区| 国产一区二区视频在线观看免费| 超碰人人干人人| 紧身裙女教师波多野结衣| 国产大片免费看| 韩国三级hd两男一女| 四虎影成人精品a片| 卡一卡二卡三在线观看| 乱h高h女3p含苞待放| 97人妻精品一区二区免费| 日本不卡一区视频| 国产精品欧美性爱| 182在线观看视频| 久久久久亚洲无码| 欧美成人久久久免费播放| 国产精品无码在线| 中文字幕在线观看2018| 中文字幕一区二区三区乱码不卡| 少妇视频一区二区| 国产呦小j女精品视频| www.99re6| 疯狂撞击丝袜人妻| 国产成人av一区二区三区不卡| 91香蕉国产视频| 日韩免费高清一区二区| 男人的天堂av网| 女人被狂躁c到高潮| 久久久久久久久久影视| 精品日韩在线视频| 在线观看福利片| av在线天堂网| 四虎地址8848| 夫妇交换中文字幕| 97人妻精品一区二区免费| 中文字幕av一区二区三区人妻少妇| 久久精品女同亚洲女同13| 91亚洲一线产区二线产区 | 欧美多人猛交狂配| www.四虎精品| 手机在线免费看毛片| 五月天精品在线| 成年人在线观看av| 538国产视频| 最近中文字幕无免费| 亚洲精品成人无码毛片| 中文字幕亚洲欧美日韩| 国产麻豆a毛片| 日韩免费av一区| 2014亚洲天堂| 肉色超薄丝袜脚交69xx图片| 亚洲色图欧美色| youjizz亚洲女人| 人妻av一区二区| 国产激情视频网站| 右手影院亚洲欧美| 永久免费av无码网站性色av| 无码一区二区三区在线| 亚州av综合色区无码一区| 中文在线永久免费观看| 一区二区免费在线观看视频| 黄色免费看视频| 中文字幕免费高清| 手机av在线看| 久久性爱视频网站| 老熟妇一区二区| 国产又黄又粗又猛又爽的视频 | 精品亚洲aⅴ无码一区二区三区| 三级视频网站在线观看| 中文字幕丰满乱子伦无码专区| 五级黄高潮片90分钟视频| 国产大屁股喷水视频在线观看| 成年人在线观看av| 日韩三级久久久| 午夜不卡久久精品无码免费| 国产免费无遮挡吸奶头视频| 国产午夜手机精彩视频| 国产又粗又猛又色| 亚洲人与黑人屁股眼交| 亚洲成a人无码| 在线国产视频一区| 蜜桃视频最新网址| 日韩精品人妻中文字幕有码| 三级黄色在线观看| 免费一级做a爰片久久毛片潮| 久久久久国产免费| 中文字幕永久免费| 久草免费资源站| 亚洲成人激情小说| 中国特级黄色片| 手机免费看av片| 最近中文字幕无免费| 日韩www视频| yjizz视频| 亚洲观看黄色网| 久久精品老司机| 99久久精品免费视频| 亚洲熟妇一区二区三区| 国产又黄又粗又猛又爽的视频| 国产人妻黑人一区二区三区| 毛茸茸free性熟hd| 亚洲欧美在线不卡| av男人的天堂av| 可以免费看av的网址| 国产色无码精品视频国产| 在线观看视频你懂得| 亚洲一区二区在线免费| 久久精品国产亚洲AV熟女| 男生草女生视频| 久草视频手机在线| 国产清纯白嫩初高中在线观看性色| 国产ts在线观看| 欧美 日本 国产| 欧美xxxx精品| 成人羞羞国产免费图片| 亚洲男女在线观看| 日本性高潮视频| 女人扒开双腿让男人捅| 一级黄色片大全| 好吊色视频在线观看| 最近中文字幕无免费| 极品美妇后花庭翘臀娇吟小说| 可以看的av网址| 国产123在线| 奇米777第四色| 韩国一级黄色录像| 97伦伦午夜电影理伦片| 亚洲国产成人精品综合99| 成都免费高清电影| 久久久久久无码精品人妻一区二区| 欧美深性狂猛ⅹxxx深喉| 污污的视频在线免费观看| av网站有哪些| 亚洲熟妇一区二区| 国产精品嫩草影院俄罗斯| 国精产品一区二区三区| 大尺度在线观看| 又黄又爽又色的视频| eeuss中文字幕| 国产一二三四区在线| 日韩一级视频在线观看| 午夜剧场免费看| 制服.丝袜.亚洲.中文.综合懂| 91动漫免费网站| 天堂在线中文视频| 精品欧美一区二区久久久| 黄色录像a级片| 亚洲av成人片色在线观看高潮 | 欧美激情一区二区三区p站| 国产免费嫩草影院| 波多野结衣一二三四区| 精品欧美一区二区久久久| 特大黑人巨人吊xxxx| 人妻少妇一区二区| 97免费公开视频| 久久久久久国产精品日本| 老司机福利在线观看| 中文字幕免费高清| 国产熟妇久久777777| 动漫精品一区二区三区| 国产精品手机在线观看| 精品黑人一区二区三区观看时间| 国产天堂av在线| 亚洲香蕉中文网| 91久久免费视频| 精品人妻中文无码av在线| 日本黄色特级片| a级大片免费看| 99久久国产精| 黄色a级片在线观看| 人妻 丝袜美腿 中文字幕| 国产乱国产乱老熟300部视频| 偷拍夫妻性生活| 欧美精品久久久久久久久46p| 尤物在线免费视频|